In this example the computation is made with actual ground elevations.



Readings are set down in a clockwise direction around the figure, beginning and ending at the same point. Note that this point is referred vertically to the base elevation (0.0) and that this 0.0 reading is also repeated; thus:

$$\left(\frac{24.384}{0.000}\right) \\ \frac{0.000}{1.676} \\ \frac{24.902}{1.676} \\ \frac{25.420}{3.353} \\ \frac{25.603}{4.633} \\ \frac{26.335}{6.401} \\ \frac{24.018}{8.534} \\ \frac{25.298}{10.973} \\ \frac{23.561}{9.144} \\ \frac{23.927}{6.706} \\ \frac{22.799}{6.096} \\ \frac{23.409}{3.658} \\ \frac{22.830}{3.048} \\ \frac{24.902}{1.676} \\ \frac{0.000}{1.676} \\ \frac{1.676}{1.676} \\ \frac{1.676}{1$$

Plus and minus signs are not necessary so long as the figure is entirely on one side of the base lines; however, the algebraic difference is essential in the following computation. Note the signs carefully.

```
24.902 \times (-1.676 + 3.353) =
                                            41.761
25.420 \times (-1.676 + 4.633) =
                                            75.167
25.603 \times (-3.353 + 6.401) =
                                            78.038
26.335 \times (-4.633 + 8.534) =
                                           102.733
24.018 \times (-6.401 + 10.973) =
                                           109.810
25.298 \times (-8.534 + 9.144) =
                                            15.432
23.561 \times (-10.973 + 6.706) =
                                            100.535
23.927 \times (-9.144 + 6.096) =
                                            72.929
22.799 \times (-6.706 + 3.658) =
                                            69.491
23.409 \times (-6.096 + 3.048) =
                                            71.351
22.830 \times (-3.658 + 1.676) =
                                            45.249
24.902 \times (-3.048 + 1.676) =
                                            34.166
Double End Area =
                                             29.220
Area =
                                             14.610
```

Computation of Area of Any Irregular Section (by Crisscross Method)

## EXAMPLE FOR END AREA COMPUTATION